LINDDUN privacy threat modeling

Kim Wuyts

y @wuytski

CIF seminar - september 2020

ABOUT ME

KIM WUYTS

POSTDOCTORAL RESEARCHER IMEC-DISTRINET, KU LEUVEN, BELGIUM

RESEARCH FOCUS

PRIVACY THREAT MODELING SOFTWARE ENGINEERING DATA PROTECTION SECURITY

GET IN TOUCH

🔀 kim.wuyts@kuleuven.be @wuytski y https://www.linkedin.com/in/kwuyts/ linl

Today

- > Threat modeling in general
- > LINDDUN
 - » What is **LINDDUN**?
 - » LINDDUN privacy categories
 - » Walk-through
 - » Security vs. privacy threat modeling
- > LINDDUN GO

WHY THREAT MODELING?

Threat modeling

Think about what can go wrong so you can fix it, before it actually happens

Threat modeling

What are you working on? What can go wrong? What are you going to do about it? Did you do an acceptable job?

LINDDUN

Systematic threat modeling methodology

- Inspired by STRIDE
- Support for elicitation and mitigation of privacy threats in software systems
- Early on in the development lifecycle

Privacy knowledge base

Linkability

Detectability

Non-repudation

Disclosure of information

Unawareness

Non-Compliance

Systematic threat modeling methodology

- Inspired by STRIDE
- Support for elicitation and mitigation of privacy threats in software systems
- Early on in the development lifecycle

Privacy knowledge base Inkability <thInkability</th> Inkability In

10

Scientific

renown

DistriN=t

LINDDUN threat categories

Privacy threat categories

Identifiability

LINDDUN

Non-repudiation

Nope. Both Mine

Disclosure of information

memecenter.com

ISN'T IT GREAT? WE HAVE TO PAY NOTHING FOR THE BARN YEAH! AND EVEN THE FOOD IS FREE

GDPR: Key concepts

Data subject rights

Processing principles Non-

Alternative privacy taxonomies

Similar to security's CIA

Unlinkability - Intervenability – Transparency

>> HANSEN, JENSEN & ROST, 2015. protection goals for privacy engineering

> Predictability - Manageability - Dissassociability

» NIST, 2017, *NISTIR 8062 – An introduction to privacy engineering and risk management in federal systems*

- > SOLOVE, D.J., 2006. A taxonomy of privacy
- > HOEPMAN, J.-H., 2012. *Privacy Design Strategies*
- > GURSES, S., 2010. Multilateral Privacy Requirements Analysis in Online Social Networks

LINDDUN step-by-step

DDUN

NDDUN

Step 2: Identify threat using threat tree catalog

NDDUN

DĭstrıN≡t

DDUN

NDDUN

Step 2: Document identified threats - example

Threat 1	Using the forgot password feature we can identify a system user
DFD element(s)	P2. Portal
LINDDUN category(/ies)	Detectability
Description	Forgot password feature asks the email address of the user and after resetting the password says that a reset password email is successfully sent to the user. This could lead to identifiability problems where an attacker can easily check whether the user has a registration within the platform.
Countermeasure	None
Likelihood	Limited
Impact	Negligible
Action point (how would you solve it)	Modify the forgot password feature to always produce the same message making it impossible to figure out whether the user with the specified email address exists or not.
LINDDUN Reference	D_P
IN	misuse cases

Step 3: Decision & Trade-off support with mitigation strategies

MITIGATION STRATEGY	LINDDUN THREAT TREE	
Protect ID	L_e, I_e	
Protect data		
Transactional data	L_df1 I_df1	
Contextual data	L_df2, I_df2, D_df, NR_df	
Awareness	U_1	
Guard exposure		
Compliance	NC	
Confidentiality	ID_ds, NR_ds, *_p	
Minimization	L_ds, I_ds, D_ds	
Maximize accuracy		
Review data	U_2	
Update/request deletion	NR_ds3	

LINDDUN privacy enhancing solutions

Mitigation Strategy				Privacy Enhancing Techniques (PETs)
	Pseudonyms			Privacy enhancing identity management system, User-controlled identity management system
Protect ID	Attributes			Privacy preserving biometrics, Private authentication
	Properties			Anonymous credentials (single show, multi-show)
		Remove		(see awareness to minimize information sharing)
	Transactional data	Hide	Data-flow specific	Multi-party computation (Secure function evaluation), Anonymous buyer-seller watermarking protocol
			General	see guard exposure - Confidentiality - encryption
		Replace		/
		Bernaria		Nice activential (ODN mixes, Onion Douting Tar)
		Remove		MIX-networks, ISDN-mixes, Onion Routing, I or)
Protect data			General	Crowds, Low-latency communication, Java Anon Proxy
		Hide	Undetectability	Steganography, Covert communication, Spread spectrum
	Contextual data		Non-repudiation	Deniable authentication, Off-the-record messaging
 Av		Replace		Single proxy (Penet pseudonymous remailer, Anonymizer, SafeWeb), anonymous Remailer (Cipherpunk Type 0, Type 1, Mixmaster Type 2,Mixminion Type 3)
		Generalize	Undetectability	dummy traffic, DC-networks
	Feedback and awareness		and awareness tools	Feedback tools for user privacy awareness
	Awareness	User-friendly privacy support		Data removal tools (spyware removal, browser cleaning tools, activity traces eraser, harddisk data eraser)
Compliance	Compliance	Policies and Consents		Policy communication (P3P), Policy enforcement (XACML), EPAL)
	·	Notice	and Transparency	/
Confider	Confidentiality	Encryption		Symmetric key & public key encryption, Deniable encryption, Homomorphic encryption, Verifiable encryption
		Access control		Context-based access control, Privacy-aware access control
Buard exposur	Minimization	Remove		1
r			Receiver privacy	Private information retrieval, Oblivious transfer
		Hide	Database privacy	Privacy preserving data mining, Searchable encryption, Private search
			General	see guard exposure - confidentiality - encryption
		Replace		1
		Generalize		K-anonymity model, I-Diversity
Maximize	Keview data			
accuracy	Opuale/ request delet			

privacy threat modeling

vs. security threat modeling vs. data protection compliance

Security vs. privacy threat modeling

Requires a different mindset

- > Security
 - » Protecting data
 - » Assets w.r.t. company
 - » (external) attacker
 - » Prevent (unauthorized) access to data
 - »» data as a whole

> Privacy

- » Protecting personal data
- » Assets w.r.t. data subject
- >> Attacker + (internal) 'misbehavior'
- » Limit consequences of what you (can) do with personal data (once you have access)
 » Individual data items/attributes

Data protection compliance vs. privacy threat modeling

- > Data protection impact assessment >> Privacy threat modeling
 - Risk-oriented
 - ✓ Model-driven

- » Legal assessment
 - »» Legal roles (i.e. controller, processor, ...)
 - >>> Processing operations
 - » Purpose specification
 - » Compatibility assessment
 - ››› ...

- » Architectural/technical assessment
 - »» 'appropriate technical measures'
 - »» Privacy by design

LINDDUN in a nutshell

 Systematic elicitation and mitigation of privacy threats in software architectures

- » traceability / accountability
- » Thoroughness
- » Requires sufficient expertise
- » Rather high complexity/friction

LINDDUN in practice

> Applying the LINDDUN mnemonic (in a brainstorm-type exercise)

traceability / accountability Thoroughness

Requires sufficient expertise Rather high complexity/friction

Light-weight privacy threat modeling

Lower the threshold

Requirements

Methodological support Simple Comprehensive Collaborative

Knowledge support Onderstandable description Applicability criteria

- > Based on industry feedback and empirical studies
- > Inspired by security threat modeling
 - » EoP card game, TRIM & STRIPED extensions, cue cards, ...

LINDDUN GO

Creating LINDDUN GO

> Inspiration from EoP¹

- » Card representation
- + Extended description

» Collaborative

+ Process more closely resembles LINDDUN

- > Reduced scope
 - » 100 LINDDUN leaf nodes -> 35 threat type cards
 - » Combined related threat types
 - » Discarded low priority threats
- > Content updates

NDDUN

» Alignment with GDPR principles

¹ Shostack, A. (2014). Elevation of privilege: Drawing developers into threat modeling. In 2014 {USENIX} Summit on Gaming, Games, and Gamification in Security Education (3GSE 14). / <u>https://www.microsoft.com/en-us/download/details.aspx?id=20303</u>

LINDDUN GO - hotspots

Inbound flows $\rightarrow \infty$ Data enters the system.

A subtype of this hotspot describes an inbound flow with a user (i.e. human actor) as sender.

Outbound flows \bigcirc

Data leave the system.

A subtype of this hotspot describes an outbound flow with a user (i.e. human actor) as recipient.

Data storage \longrightarrow \square

Data are being persisted in storage.

Data retrieval \longrightarrow Data are being retrieved from storage.

Processes $\rightarrow \rightarrow \rightarrow$

Data are being processed internally.

Applying LINDDUN GO

Scoping with hotspots

DDUN

IDENTIFYING INBOUND DATA

The data sent to the system can be used to identify the user (with a sufficient degree of likelihood).

- 1. Does the flow contain identifiable personal data (i.e. identified data, data that can be linked to already obtained identified data, or data that, when combined, become identified)? (if unknown, assume it is)
- 2. Would it be a problem if the user is identified based on these data (i.e. do they need to remain anonymous)?

Data subject anonymously shares his preferences in a feedback form (of his employer, school, ...). When these preferences are unique, they can identify the user.

LINDDUN

- Data subject can be identified by linking data to previously obtained data (from same or other source).
- Likelihood depends on previous knowledge of the organization.
- The data subject is not necessarily the sender.
- Combining several data items can lead to identification.
- Identifying credentials (I1) and actions (I2) are subtypes of this threat.

Í

13

5

LINDDUN GO - instructions

LINDDUN GO - Variants

- Quick Only the card drawer elicits an applicable threat. No group iteration over each card.
- Time-boxed Time-box the exercise (or limit the number of cards) and do multiple threat modeling sessions
- > Fun Turn it into a game and earn points for each identified threat
- Solitary use the threat type cards as input for an individual privacy threat elicitation exercise.
- > Freestyle Only use the LINDDUN GO category cards to ideate privacy threats. (Note that this requires sufficient privacy expertise to be executed successfully)

NON-REF

DETECTAE

What?

Tell me more!

٠

٠

HIRES BLOCK CLOT OTHER DESIGNED TO THE CLOT OF CLUE OF

Note that this category is mainly in

Unawareness relates i

focuses on transpares (or manageability) t

Lack of transpare

So unara

and/or processir

Examples: no notic

Lackofinter their own pr

Example of data

So

A data subject is unaware o the collection and further,

UNAWAR

tell me motel

Data production processing principles include.

OTHASORE CHARGE COLON ... SOLO BS TEQUITED TO THE DUTDOSE

Area BI HUS CORP. BU

Alhara

Being able to sufficiently disting interest (IOI) exists or not. (PH2010)

Without having access to the exists. Existence of data is su (sensitive) information.

Examples: By detecting that a ce one can infer the celebrity has a actual record.

Detectability can lead t

What?

A data subject cannot den something.

Tell me more!

There is evidence that action.

Examples: unable to der deny having filed a com deny whom they voted

Identifiability (an non-repudiation

Note that non-repy result in any confli security goal, sho This information can be (linkability) and/or ide

When personal dat stricter security m unawareness and

IDENTIF

Being able to sufficiently ide subjects (i.e. the anonymity

Data items can be linked with a certain probability

Examples: identifying the re person to whom an entry in

So wh Non repu

person is he can b prosecu

Inference (NOZO) Deduce information from a set

Singling out (NP29) | attribution sisolate some or all records with isolate some or all records a silvidentifier

Isolate some or an records without necessarily identify

Identifiability Link data items to identity

LINKABILITY

aple to sufficiently distinguish whe erest) are linked or not, even withou erest) are subject of the linkable loi tilly of the subject of the linkable loi

Data items can be linked because they subject, with a certain probability.

Examples: web page visits W the same user. Examples: web page visits W the div a friends

so what?

can result in:

Dataitems can also be linked becau

Examples, linking people who visit the same similar disease, atc.

DistrıN≣t

The staten ages not compt with gate protection principles

NON COMPLEXACT

LINDDUN GO category cards

LINKABILITY

What?

Being able to sufficiently distinguish whether two IOI (items of interest) are linked or not, even without knowing the actual identity of the subject of the linkable IOI. [PH2010]

Tell me more!

Data items can be linked because they belong to the same data subject, with a certain probability.

Examples: web page visits by the same user, entries in two databases related to the same person, people related by a friendship link, etc.

Data items can also be linked because they share the same property.

Examples: linking people who visit the same restaurant, linking people with a similar disease, etc.

So what?

Can result in:

Inference [WP29] Deduce information from a set of data items.

Singling out [WP29] **/ attribution** isolate some or all records which belong to precisely one individual (without necessarily identifying).

Identifiability Link data items to identity of data subject.

LINKABILITY

FLOWS TO/FROM SYSTEM

INBOUND

The system can link personal data it receives to other data items

The receiving parties can link the personal data to other data items

OUTBOUND

DATA STORAGE

STORE

 $\hookrightarrow \equiv$

The system stores personal data that can be linked to data items (from the same or other databases)

RETRIEVE

The retrieved data can be linked to other data items

• Summarize each threat category

Highlight the applicable
 hotspots to take into consideration

Preliminary evaluation

Trial run – students' hands-on experience * – feedback from industry professionals

- > LINDDUN GO easier to apply than LINDDUN threat trees
- > Cards and approach easy to understand
 - » Applicability questions and examples most valued
 - » Varying opinions on hotpots
 - » Bonus points for collaborative aspect
- > Suggestions
 - » Documentation support
 - » Solutions suggestions/selection

While intended as a support privacy engineering at the design stage, LINDDUN GO helps all participants learn by doing in a collaborative way, confidently brainstorming different solutions. This makes it particularly suited to agile / DevOps organisations that don't have the luxury of wading through extensive documentation.

Want to try?

www.linddun.org

We want your feedback!

Resources

> www.linddun.org

- > Some recommendations
 - » ENISA. Privacy and Data Protection by Design from policy to engineering, December 2014
 - » ISO27550 on privacy engineering, 2019
 - » EDPS. Preliminary opinion on privacy by design, May 2018
 - » The NIST Privacy Framework: A Tool for Improving Privacy through Enterprise Risk Management Version 1.0 (January 2020)
 - » Adam Shostack. Threat modeling, Wiley, 2014

LINDDUN privacy threat modeling

Kim Wuyts

https://www.linkedin.com/in/kwuyts/

WWW.LINDDUN.ORG