
Trusted Execution
– and how far you can trust it

Jan Tobias Mühlberg
jantobias.muehlberg@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

CIF Seminar, CiTiP, KU Leuven, 2020-02-07

jantobias.muehlberg@cs.kuleuven.be

empty

Trusted Computing. . .
• Strong integrity protection and isolation for software components
• Software attestation: cryptographically bind a software to the executing

hardware
• Sealed storage: bind data to attested software

. . . and how far you can trust it
• Under which assumptions and attacker models?
• What about privacy?
• What are interesting use cases?

2 /41 Jan Tobias Mühlberg Trusted Execution

empty

Computers and how they get hacked

3 /41 Jan Tobias Mühlberg Trusted Execution

Computers and how they get hacked

Memory contains bits. Lots of them. Bits are grouped
in bytes or words, which can be individually addressed.

Software can instruct the processor to load bytes
into memory.

Memory content can be interpreted as code or data.

Software is modular! Applications rely on a wealth
of system software and shared code libraries to
implement functionality.

Security is based on assumptions. What is
trusted? What do we expect an attacker to do?
What vulnerabilities are likely to exist in
our code? Is there a moment when the system
is supposedly secure?

Computers and how they get hacked

Memory contains bits. Lots of them. Bits are grouped
in bytes or words, which can be individually addressed.

Software can instruct the processor to load bytes
into memory.

Memory content can be interpreted as code or data.

Software is modular! Applications rely on a wealth
of system software and shared code libraries to
implement functionality.

Security is based on assumptions. What is
trusted? What do we expect an attacker to do?
What vulnerabilities are likely to exist in
our code? Is there a moment when the system
is supposedly secure?

Computers and how they get hacked

Memory contains bits. Lots of them. Bits are grouped
in bytes or words, which can be individually addressed.

Software can instruct the processor to load bytes
into memory.

Memory content can be interpreted as code or data.

Software is modular! Applications rely on a wealth
of system software and shared code libraries to
implement functionality.

Security is based on assumptions. What is
trusted? What do we expect an attacker to do?
What vulnerabilities are likely to exist in
our code? Is there a moment when the system
is supposedly secure?

Computers and how they get hacked

Memory contains bits. Lots of them. Bits are grouped
in bytes or words, which can be individually addressed.

Software can instruct the processor to load bytes
into memory.

Memory content can be interpreted as code or data.

Software is modular! Applications rely on a wealth
of system software and shared code libraries to
implement functionality.

Security is based on assumptions. What is
trusted? What do we expect an attacker to do?
What vulnerabilities are likely to exist in
our code? Is there a moment when the system
is supposedly secure?

Computers and how they get hacked

Memory contains bits. Lots of them. Bits are grouped
in bytes or words, which can be individually addressed.

Software can instruct the processor to load bytes
into memory.

Memory content can be interpreted as code or data.

Software is modular! Applications rely on a wealth
of system software and shared code libraries to
implement functionality.

Security is based on assumptions. What is
trusted? What do we expect an attacker to do?
What vulnerabilities are likely to exist in
our code? Is there a moment when the system
is supposedly secure?

Computers and how they get hacked

Memory contains bits. Lots of them. Bits are grouped
in bytes or words, which can be individually addressed.

Software can instruct the processor to load bytes
into memory.

Memory content can be interpreted as code or data.

Software is modular! Applications rely on a wealth
of system software and shared code libraries to
implement functionality.

Security is based on assumptions. What is
trusted? What do we expect an attacker to do?
What vulnerabilities are likely to exist in
our code? Is there a moment when the system
is supposedly secure?

Computers and how they get hacked

Memory contains bits. Lots of them. Bits are grouped
in bytes or words, which can be individually addressed.

Software can instruct the processor to load bytes
into memory.

Memory content can be interpreted as code or data.

Software is modular! Applications rely on a wealth
of system software and shared code libraries to
implement functionality.

Security is based on assumptions. What is
trusted? What do we expect an attacker to do?
What vulnerabilities are likely to exist in
our code? Is there a moment when the system
is supposedly secure?

Computers and how they get hacked

Memory contains bits. Lots of them. Bits are grouped
in bytes or words, which can be individually addressed.

Software can instruct the processor to load bytes
into memory.

Memory content can be interpreted as code or data.

Software is modular! Applications rely on a wealth
of system software and shared code libraries to
implement functionality.

Security is based on assumptions. What is
trusted? What do we expect an attacker to do?
What vulnerabilities are likely to exist in
our code? Is there a moment when the system
is supposedly secure?

empty

Computers and how they get hacked

1 /* stack1.c; https://github.com/gerasdf/InsecureProgramming */
2

3 #include <stdio.h>
4

5 int main() {
6 int cookie;
7 char buf[80];
8

9 printf("buf: %08x cookie: %08x\n", &buf, &cookie);
10 gets(buf);
11

12 if (cookie == 0x41424344) {
13 printf("you win!\n");
14 }
15 }

Task: Compile and exploit to get “you win!”.

5 /41 Jan Tobias Mühlberg Trusted Execution

empty

Computers and how they get hacked

1 /* stack1.c; https://github.com/gerasdf/InsecureProgramming */
2

3 #include <stdio.h>
4

5 int main() {
6 int cookie;
7 char buf[80];
8

9 printf("buf: %08x cookie: %08x\n", &buf, &cookie);
10 gets(buf);
11

12 if (cookie == 0x41424344) {
13 printf("you win!\n");
14 }
15 }

Task: Compile and exploit to get “you win!”.

5 /41 Jan Tobias Mühlberg Trusted Execution

empty

Security in Smart Environments

Vulnerabilities can hide anywhere: There are 150M lines of code
in a modern car. Compartmentalisation can help with managing complexity
and bug containment.

6 /41 Jan Tobias Mühlberg Trusted Execution

Image source: https://internetofthingsagenda.techtarget.com/definition/smart-city

https://internetofthingsagenda.techtarget.com/definition/smart-city

empty

Security in Smart Environments

Infrastructure needs to be developed with safety, security and privacy in
mind! What is critical infrastructure? What is critical code? Where is personal
data being processed? What’s the impact of failure?

7 /41 Jan Tobias Mühlberg Trusted Execution

Image source: https://internetofthingsagenda.techtarget.com/definition/smart-city

https://internetofthingsagenda.techtarget.com/definition/smart-city

empty

Security in Smart Environments

Understanding can be really difficult: What stake holders are involved? What
are their objectives and abilities? What hardware and software is involved?
Software quality? Data flows? Security requirements and guarantees?

8 /41 Jan Tobias Mühlberg Trusted Execution

Image source: https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0

https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0

empty

Security in Smart Environments

9 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html

https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html

empty

Security in Smart Environments

“The risks are about to get worse, because computers are
being embedded into physical devices and will affect

lives, not just our data.”

— Bruce Schneier, [Sch18]

10 /41 Jan Tobias Mühlberg Trusted Execution

empty

Security in Smart Environments

11 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://www.wired.co.uk/article/teledildonics-hacking-sex-toys (2017)

https://www.wired.co.uk/article/teledildonics-hacking-sex-toys

empty

Security in Smart Environments

12 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://www.wired.co.uk/article/sex-toy-bluetooth-hacks-security-fix (2018)

https://www.wired.co.uk/article/sex-toy-bluetooth-hacks-security-fix

empty

Security in Smart Environments

13 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

Source: https://www.xkcd.com/1938/

https://www.xkcd.com/1938/

empty

Security in Smart Environments

15 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://www.europol.europa.eu/publications-documents/cybercrime-dependencies-map

https://www.europol.europa.eu/publications-documents/cybercrime-dependencies-map

empty

What can we trust?

• Reasoning about security is about setting boundaries
• Which parts are considered trusted, and which parts are not? And why?
• How far do you want to go in defending your application?
• What kind of security is economically viable?

• Building secure systems requires rigorous security arguments
• Having a good idea about what you are building.
• Determining which attackers are considered to be in scope.
• Analysing potential vulnerabilities, and introducing appropriate

countermeasures.

• A security argument is a rigorous argument that under a given system
and adversary model, a countermeasure effectively counters a threat,
or a security mechanism achieves a security goal.

16 /41 Jan Tobias Mühlberg Trusted Execution

empty

What can we trust?

Software?

Hardware?

Supply Chains?

People?

. . .

17 /41 Jan Tobias Mühlberg Trusted Execution

empty

What can we trust?

18 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america...

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies

empty

Gathering Platform Requirements – A Thought Experiment

Sensors come from different vendors. Why would you trust them?
The cloud is “other people’s computers”. Why trust them?
Terminals may be used and managed by health care professionals. . .
There are huge software and hardware stacks with multiple vendors everywhere.

19 /41 Jan Tobias Mühlberg Trusted Execution

Image source: https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0

https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0

empty

Gathering Platform Requirements – A Thought Experiment

Key elements of secure system design?

• Shift liability to 3rd party, get a cyber insurance!
• Thread modelling, risk assessment, etc.
• Anonymisation of data, if possible
• Zero Trust, micro-segmentation and granular perimeters

How can the execution environment (= hardware) help you?
• Encryption
• Isolation, Security Rings
• Minimise Trusted Computing Base:

remove hypervisors, OSs, libraries from TCB
only trust hardware and your own code

20 /41 Jan Tobias Mühlberg Trusted Execution

empty

Gathering Platform Requirements – A Thought Experiment

Key elements of secure system design?
• Shift liability to 3rd party, get a cyber insurance!

• Thread modelling, risk assessment, etc.
• Anonymisation of data, if possible
• Zero Trust, micro-segmentation and granular perimeters

How can the execution environment (= hardware) help you?
• Encryption
• Isolation, Security Rings
• Minimise Trusted Computing Base:

remove hypervisors, OSs, libraries from TCB
only trust hardware and your own code

20 /41 Jan Tobias Mühlberg Trusted Execution

empty

Gathering Platform Requirements – A Thought Experiment

Key elements of secure system design?
• Shift liability to 3rd party, get a cyber insurance!
• Thread modelling, risk assessment, etc.
• Anonymisation of data, if possible
• Zero Trust, micro-segmentation and granular perimeters

How can the execution environment (= hardware) help you?
• Encryption
• Isolation, Security Rings
• Minimise Trusted Computing Base:

remove hypervisors, OSs, libraries from TCB
only trust hardware and your own code

20 /41 Jan Tobias Mühlberg Trusted Execution

empty

Gathering Platform Requirements – A Thought Experiment

Key elements of secure system design?
• Shift liability to 3rd party, get a cyber insurance!
• Thread modelling, risk assessment, etc.
• Anonymisation of data, if possible
• Zero Trust, micro-segmentation and granular perimeters

How can the execution environment (= hardware) help you?

• Encryption
• Isolation, Security Rings
• Minimise Trusted Computing Base:

remove hypervisors, OSs, libraries from TCB
only trust hardware and your own code

20 /41 Jan Tobias Mühlberg Trusted Execution

empty

Gathering Platform Requirements – A Thought Experiment

Key elements of secure system design?
• Shift liability to 3rd party, get a cyber insurance!
• Thread modelling, risk assessment, etc.
• Anonymisation of data, if possible
• Zero Trust, micro-segmentation and granular perimeters

How can the execution environment (= hardware) help you?
• Encryption
• Isolation, Security Rings

• Minimise Trusted Computing Base:
remove hypervisors, OSs, libraries from TCB
only trust hardware and your own code

20 /41 Jan Tobias Mühlberg Trusted Execution

empty

Gathering Platform Requirements – A Thought Experiment

Key elements of secure system design?
• Shift liability to 3rd party, get a cyber insurance!
• Thread modelling, risk assessment, etc.
• Anonymisation of data, if possible
• Zero Trust, micro-segmentation and granular perimeters

How can the execution environment (= hardware) help you?
• Encryption
• Isolation, Security Rings
• Minimise Trusted Computing Base:

remove hypervisors, OSs, libraries from TCB
only trust hardware and your own code

20 /41 Jan Tobias Mühlberg Trusted Execution

empty

Motivation: Application Attack Surface

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

21 /41 Jan Tobias Mühlberg Trusted Execution

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

empty

Motivation: Application Attack Surface

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Layered architecture↔ hardware-only TCB
21 /41 Jan Tobias Mühlberg Trusted Execution

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

empty

Gathering Platform Requirements – A Real System
“We don’t want the Signal service to have visibility
into the social graph of Signal users. Signal is
always aspiring to be as ‘zero knowledge’ as
possible, and having a durable record of every
user’s friends and contacts on our servers would
obviously not be privacy-preserving.”

1 Run a contact discovery service in a secure SGX enclave.
2 Clients that wish to perform contact discovery negotiate a secure connection

over the network all the way through the remote OS to the enclave.
3 Clients perform remote attestation to ensure that the code which is running in

the enclave is the same as the expected published open source code.
4 Clients transmit [...] their address book to the enclave.
5 The enclave looks up a client’s contacts in the set of all registered users and

encrypts the results back to the client.

22 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://signal.org/blog/private-contact-discovery/

https://signal.org/blog/private-contact-discovery/

empty

Gathering Platform Requirements – A Real System
“We don’t want the Signal service to have visibility
into the social graph of Signal users. Signal is
always aspiring to be as ‘zero knowledge’ as
possible, and having a durable record of every
user’s friends and contacts on our servers would
obviously not be privacy-preserving.”

1 Run a contact discovery service in a secure SGX enclave.
2 Clients that wish to perform contact discovery negotiate a secure connection

over the network all the way through the remote OS to the enclave.
3 Clients perform remote attestation to ensure that the code which is running in

the enclave is the same as the expected published open source code.
4 Clients transmit [...] their address book to the enclave.
5 The enclave looks up a client’s contacts in the set of all registered users and

encrypts the results back to the client.

22 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://signal.org/blog/private-contact-discovery/

https://signal.org/blog/private-contact-discovery/

empty

Trusted Computing

According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity
• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

23 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing

empty

Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity
• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

23 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing

empty

Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity
• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

23 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing

empty

Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity
• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

23 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing

empty

Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity
• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

23 /41 Jan Tobias Mühlberg Trusted Execution

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing

empty

Intel SGX Helicopter View

https://software.intel.com/en-us/sgx/details

• Protected enclave in application’s virtual
address space
• Enclave can be entered through

restrictive call gate only
• Provides attestation interface
• Memory encryption defends against

untrusted system software and cold boot
attacks

24 /41 Jan Tobias Mühlberg Trusted Execution

https://software.intel.com/en-us/sgx/details

empty

Comparing Hardware-Based Trusted Computing Architectures

25 /41 Jan Tobias Mühlberg Trusted Execution

Isolatio
n

Atte
statio

n

Sealin
g

Dynamic RoT

Code Confidentia
lity

Side-Channel Resistance

Memory
Protectio

n

Lightweight

Coprocessor

HW-Only TCB

Preemptio
n

Dynamic Layout

Upgradeable TCB

Backwards Compatib
ilit

y

Open-Source

Academic

Target ISA

AEGIS –

TPM – – – –
TXT x86_64

TrustZone ARM

Bastion UltraSPARC

SMART – – – AVR/MSP430

Sancus 1.0 MSP430
Soteria MSP430
Sancus 2.0 MSP430

SecureBlue++ POWER

SGX x86_64

Iso-X OpenRISC

TrustLite Siskiyou Peak

TyTAN Siskiyou Peak

Sanctum RISC-V

= Yes; = Partial; = No; – = Not Applicable

Adapted from
“Hardware-Based
Trusted Computing
Architectures for
Isolation and
Attestation”, Maene et
al., IEEE Transactions
on Computers, 2017.
[MGdC+17]

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality
• Applications share address space

• Boundaries between applications
are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality
• Applications share address space
• Boundaries between applications

are not enforced

• Integrity? Confidentiality?
Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality
• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality
• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O

• Built-in cryptography and (remote)
attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality
• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O

• Built-in cryptography and (remote)
attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality
• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality
• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

26 /41 Jan Tobias Mühlberg Trusted Execution

empty

Sancus: Strong and Light-Weight Embedded Security [NVBM+17]
Extends openMSP430 with
strong security primitives
• Software Component

Isolation
• Cryptography & Attestation
• Secure I/O through isolation

of MMIO ranges

Efficient
• Modular, ≤ 2 kLUTs
• Authentication in µs
• + 6% power consumption

Cryptographic key hierarchy
for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

27 /41 Jan Tobias Mühlberg Trusted Execution

https://distrinet.cs.kuleuven.be/software/sancus/

empty

Sancus: Strong and Light-Weight Embedded Security [NVBM+17]
Extends openMSP430 with
strong security primitives
• Software Component

Isolation
• Cryptography & Attestation
• Secure I/O through isolation

of MMIO ranges

Efficient
• Modular, ≤ 2 kLUTs
• Authentication in µs
• + 6% power consumption

Cryptographic key hierarchy
for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

28 /41 Jan Tobias Mühlberg Trusted Execution

N = Node; SP = Software Provider / Deployer
SM = protected Software Module

Unprotected

E
nt

ry
po

in
t

Code & constants Unprotected

SM text section

Protected data

SM protected data section

Unprotected

M
em

or
y

KN,SP,SM SM metadata

Layout Keys

Protected
storage
areaKN

https://distrinet.cs.kuleuven.be/software/sancus/

empty

Secure Automotive Computing with Sancus [VBMP17]

29 /41 Jan Tobias Mühlberg Trusted Execution

Modern cars can be hacked!
• Network of more than 50 ECUs
• Multiple communication networks
• Remote entry points
• Limited built-in security mechanisms Miller & Valasek, “Remote exploitation of an unaltered passenger vehicle”, 2015

Sancus brings strong security for
embedded control systems:
• Message authentication
• Trusted Computing: software component

isolation and cryptography
• Strong software security
• Applicable in automotive, ICS, IoT, . . .

empty

Secure Automotive Computing with Sancus [VBMP17]

30 /41 Jan Tobias Mühlberg Trusted Execution

empty

Authentic Execution of Distributed Event-Driven Applications

“Authentic Execution of Distributed Event-Driven Applications with a Small TCB”,
Noorman et al., STM 2017. [NMP17]

31 /41 Jan Tobias Mühlberg Trusted Execution

empty

When not to trust your TEE. . .

Trusted Execution does not help you against bugs in your own (trusted)
code.

Trusted Execution does not help you if you don’t know what to protect.

(Trusted) Execution can be observed through indirect channels and may
leak secrets through these channels.

32 /41 Jan Tobias Mühlberg Trusted Execution

empty

Motivation: Application Attack Surface

Layered architecture↔ hardware-only TCB

Untrusted OS→ new class of powerful side-channels

33 /41 Jan Tobias Mühlberg Trusted Execution

empty

Motivation: Application Attack Surface

Layered architecture↔ hardware-only TCB

Untrusted OS→ new class of powerful side-channels

33 /41 Jan Tobias Mühlberg Trusted Execution

empty

Side-Channel Attack Principle

Source: https://commons.wikimedia.org/wiki/File:WinonaSavingsBankVault.JPG

34 /41 Jan Tobias Mühlberg Trusted Execution

https://commons.wikimedia.org/wiki/File:WinonaSavingsBankVault.JPG

empty

Side-Channel Attack Principle

Source: https://flic.kr/p/69sHDa34 /41 Jan Tobias Mühlberg Trusted Execution

https://flic.kr/p/69sHDa

empty

Summary
[Background]

1 Software vulnerabilities are hard to
eliminate and can be exploited by attackers

2 Even correct code needs protection
against layer-below attacks!

Trusted Execution Technology
1 Strong application isolation and attestation:

hardware-level security and taming complexity
2 No protection against buggy software!
3 Potential for invasive use

Sancus
1 The Open-Source Trusted Computing Architecture
2 Built upon openMSP430 16-bit MCU, applications

in IoT and embedded control systems
3 Research prototype under active development!

35 /41 Jan Tobias Mühlberg Trusted Execution

0 1 0 1 0 0 0 1 0 0 1 0 0 0 1

Zero threshold

Trusted Execution for Everyone

Fortanix solves cloud security and privacy using runtime encryption technology
build upon Intel SGX. https://fortanix.com/

SCONE enables secure execution of containers and programs using Intel SGX.
https://sconecontainers.github.io/

Graphene-SGX: A practical library OS for unmodified applications on SGX.
https://github.com/oscarlab/graphene

Open Enclave is an SDK for building enclave applications in C and C++.
https://github.com/Microsoft/openenclave

Our Tutorial: Building distributed enclave applications with Sancus and SGX
https://github.com/sancus-pma/tutorial-dsn18

https://fortanix.com/
https://sconecontainers.github.io/
https://github.com/oscarlab/graphene
https://github.com/Microsoft/openenclave
https://github.com/sancus-pma/tutorial-dsn18

empty

The Impact of ICT. . .

37 /41 Jan Tobias Mühlberg Trusted Execution

. . . and why the right choice of sustainable
solutions really matters.

Image sources: Electronic waste recycling in Ghana, https://en.wikipedia.org/; Martin Falbisoner, Garzweiler surface mine, https://en.wikipedia.org/;
Sebastian Meyer, “Blood, Sweat and Batteries”, https://www.sebmeyer.com/

https://en.wikipedia.org/wiki/File:Agbogbloshie.JPG
https://en.wikipedia.org/wiki/Garzweiler_surface_mine#/media/File:Garzweiler_surface_mine,_October_2018,_-02.jpg
https://www.sebmeyer.com/blood-sweat-and-batteries/

Food For Thoughts

Trusted Computing in public communications infrastructure

Trusted Computing to protect critical industrial infrastructure

Secret computations on secret data, executing on a public clouds

Hiding malware, computing cryptographic signatures on other people’s
computers

empty

Thank you!

“The risks are about to get worse, because computers are
being embedded into physical devices and will affect

lives, not just our data.”

— Bruce Schneier, [Sch18]

Thank you! Questions?

https://distrinet.cs.kuleuven.be/
https://github.com/sancus-pma/tutorial-dsn18

39 /41 Jan Tobias Mühlberg Trusted Execution

https://distrinet.cs.kuleuven.be/
https://github.com/sancus-pma/tutorial-dsn18

empty

References I

P. Maene, J. Gotzfried, R. de Clercq, T. Muller, F. Freiling, and I. Verbauwhede.
Hardware-based trusted computing architectures for isolation and attestation.
IEEE Transactions on Computers, PP(99):1–1, 2017.

C. Miller and C. Valasek.
Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015.

J. Noorman, J. T. Mühlberg, and F. Piessens.
Authentic execution of distributed event-driven applications with a small TCB.
In STM ’17, vol. 10547 of LNCS, pp. 55–71, Heidelberg, 2017. Springer.

J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling.
Sancus 2.0: A low-cost security architecture for IoT devices.
ACM Transactions on Privacy and Security (TOPS), 20:7:1–7:33, 2017.

B. Schneier.
Internet hacking is about to get much worse.
The New York Times, 10 2018.

J. Van Bulck, J. T. Mühlberg, and F. Piessens.
VulCAN: Efficient component authentication and software isolation for automotive control networks.
In ACSAC ’17, pp. 225–237. ACM, 2017.

40 /41 Jan Tobias Mühlberg Trusted Execution

empty

Attestation and Communication with Sancus
Ability to use KN,SP,SM proves the integrity and isolation
of SM deployed by SP on N

• Only N and SP can compute KN,SP,SM
N knows KN and SP knows KSP

• KN,SP,SM on N is computed after enabling isolation
No isolation, no key; no integrity, wrong key
• Only SM on N is allowed to use KN,SP,SM

Through special instructions

Remote attestation and secure communication by
Authenticated Encryption with Associated Data

• Confidentiality, integrity and authenticity
• Encrypt and decrypt instructions use KN,SP,SM of the calling SM
• Associated Data can be used for nonces to get freshness

41 /41 Jan Tobias Mühlberg Trusted Execution

empty

Attestation and Communication with Sancus
Ability to use KN,SP,SM proves the integrity and isolation
of SM deployed by SP on N

• Only N and SP can compute KN,SP,SM
N knows KN and SP knows KSP

• KN,SP,SM on N is computed after enabling isolation
No isolation, no key; no integrity, wrong key
• Only SM on N is allowed to use KN,SP,SM

Through special instructions

Remote attestation and secure communication by
Authenticated Encryption with Associated Data

• Confidentiality, integrity and authenticity
• Encrypt and decrypt instructions use KN,SP,SM of the calling SM
• Associated Data can be used for nonces to get freshness

41 /41 Jan Tobias Mühlberg Trusted Execution

